
November 2017

WebRTC for Live Media
and Broadcast
Second screen and CDN traffic optimization

Author: Jesús Oliva
Founder & Media Lead Architect

November 2017 Copyright Epic Labs 2017.

It is not a surprise if we say browsers are evolving so quickly and they have beco-
me one of the most important apps of our computers. From the time they were
limited rendering engines with basic scripting support, the few needed to render
a few snowflakes in your web during Christmas period, a lot has changed. I re-
member how amazed I was when I saw Google Wave for the first time, or later
on when Google Docs was released. It was like having all my office tools within
the browser!

As time goes by more applications are getting into our browsers. Their rendering
capabilities are growing and scripting engines are becoming so powerful and
flexible that they are even used as the core of backend technologies (Chrome
V8 and Node.JS). There are more and more new APIs that enable us to imple-
ment new and enriched experiences: canvas, WebGL, HTML5 video and audio,…
Did you imagine 15 years ago that someday you could run Quake III within your
browser? Me not.

This evolution is not only affecting how we can render things in the screen or
the performance and efficiency of javascript engines. It is also coming with very
powerful APIs and technologies that bring us the possibility of implementing
products that challenge the old concept of web apps based on HTTP or, in ge-
neral, any application that requires any kind of interactivity across any number
of users and then needs low latency communications.

WebRTC is a set of technologies
and protocols that allows real time
communications (video, audio and/
or data) between two or more peers.
It doesn’t use HTTP, it doesn’t requi-
re a server. And the most important
thing: it is integrated in most of mo-
dern browsers. This is, Chrome, Fire-
fox and latest versions of Microsoft
Edge and Safari.

This means that with a very simple
API exposed by your browser and
accessible from Javascript you can
start implementing applications that
require real time communication

features. Just think of the possibilities
of having a low latency bi-directional
communication channel that allows
direct and secure connections with
other users at your disposal. Some
of those applications could be video
conferencing systems, applications
in which two or more users can send
data to each other without using an
intermediary server (P2P mesh ne-
twork) or, in general, any application
that requires any kind of interactivity
across any number of users and then
needs low latency communications.

What is WebRTC

Introduction

Going Beyond WebRTC Limitations
Of course, nothing comes without a price. For us, developers, the possibility
of having real time communication in the palm of our hand is great but it also
comes with some responsibilities. The responsibility of making it scale. As an
example, imagine we are building a web application that uses webRTC to imple-
ment an application in which one user (the sender) publishes video content that
can be watched by any number of watchers. If there are 100 users watching the
stream, the sender will encode her video just one time, but will need to send it
independently to each one of the watchers. Doing some numbers, if the sender
is encoding her video with a bitrate of 1Mbps, she will need 100 Mbps of sus-
tained bandwidth for making this work. It sounds like too much for not a huge
number of users, right?

But that’s not all. In video/audio communications, WebRTC automatically
adapts video quality, taking into account the conditions of the network connec-
tion. This is done with the target of ensuring video/audio is transmitted with low
latency (200-500 ms), key aspect of WebRTC. This sounds great. You get this
functionality from the browser without implementing your own bitrate or qua-
lity adaptation algorithms. But how good the bitrate adaptations works when
you have an enough big number of watchers? Coming back to our example,
the way it works is, if one of our 100 watchers has network issues or bandwidth
limitations, the sender will encode her content with such a reduced quality that
can guarantee low latency for this limited bandwidth watcher. In other words, a
network issue in one of our 100 watchers will affect the video quality received
by all of them. Not so good.

Do these limitations mean that we cannot use WebRTC in production environ-
ments in which we have an enough big number of users? No, not at all, we just
need to keep in mind its “limitations” and design solutions that overcome them.
How easy is to develop a web server using NodeJS? So easy. How easy is to de-
velop a web server using NodeJS that can scale to attend 1 million of users per
second? So complicated that everyone can’t do it. The same applies to WebRTC
but with the extra complexity of scaling real time communication based appli-
cations.

There are ways to overcome WebRTC scalability limitations to enable more and
more use cases. Including the ones thought for television consumption envi-
ronments in which you can use WebRTC to provide interactive or low latency
streaming services to millions of users. You just need the right expertise. One
option is to design a solution that moves the complexity of the scalability to a
Media Platform on the cloud which acts as an intermediary in the communica-
tions. In this kind of solution, any sender will do just one transmission, the one to
the Media Platform, and it is the responsibility of the system handling all delivery
and routing process across the different connections/watchers. In addition,

November 2017 Copyright Epic Labs 2017.

WebRTC for Live Media and Broadcast

different capabilities can be built through a cloud service provider, lifting ma-
chines as needed to ensure scalability, if necessary. With this approach, different
business logics can be assembled for a wide variety of use cases that go beyond
videoconferencing.

November 2017 Copyright Epic Labs 2017.

What can be expected in the Media Broad-

cast environment?
In today’s television market, whether we are talking about traditional media or
those in the Web TV and OTT environment, this technology allows us to open a
channel with users to send and receive information in real time. This can be par-
ticularly useful in second-screen applications associated with live sport events,
for example. In motor sports, it can be used to generate data feeds that deliver
real time information about the race, or it can also be used to stream cameras
and real time video feeds that are not available in the main broadcast.
WebRTC’s ability to exchange both video and data at low latency enables inte-
ractive video experiences. Conversations (small video conferences) can be held
while the event is taking place and data can be accessed.

For broadcasters, ideally, and with the goal of keeping latency as lowest as
possible, the SDI signal should be converted to a WebRTC stream as early as
possible. Although there is no product to perform this particular repackaging/
transcoding operation, it can be done knowing well the specifics about SDI, and
WebRTC encoding and muxing characteristics. At the end of the day WebRTC
is not re-inventing new protocols, it is leveraging the use of existent and widely

WebRTC for Live Media and Broadcast

November 2017 Copyright Epic Labs 2017.

used technologies (SDP and SRTP, besides others) and there are ways to achieve
complete interoperability between it and protocols used in broadcast environ-
ment.

Additionally, an advantage of WebRTC is its protection schema. Every packet
sent is encrypted to guarantee the security and integrity of the information. This
is one of the fundamental pillars of WebRTC’s definition since its inception by
Google and later on by the W3C, which is responsible for defining the standard.
The integrity of communications is therefore guaranteed regardless of its appli-
cation or the content that travels through them.

The biggest problem that a TV station or a TV Platform faces when it comes to
working with this technology is scalability. It is not easy scaling applications that
deliver real time content or data. As explained, WebRTC, when used for video/
audio transmission, does whatever it takes to keep latency low, and that can
also be a drawback because it may involve degradation of video quality. If pre-
mium live content is being consumed, the screen cannot go black because of
insufficient bandwidth. The key is to find the right balance between quality and
availability of the service, that depends on the kind of application we are buil-
ding and on how the QoE affects its users. It is not the same a service that has to
support real-time video with high quality on a mobile device, or a second screen
or complementary one that will support a layer of interactivity in real time at the
same time that a main broadcast occurs.

WebRTC for Live Media and Broadcast

November 2017 Copyright Epic Labs 2017.

Use Cases for live content
1 – Second screen Applications

WebRTC allows second screen experiences for live premium content, enabling
alternative video sources and interactivity. This field admits a lot of creativity. In
the second screen it would be possible to include alternative cameras that can-
not be accessed in the main broadcast and all types of data feeds. For example,
in a racing car competition all kinds of statistics, times, maps, biographies, etc.
can be displayed.

In addition, WebRTC allows communications between users through the same
channels. We can talk about a simple chat or videoconferencing between se-
veral users in real time while you are watching the event and commenting on
the application data on the second screen. This is something that works in this
technology natively, without the need for a server for conversations between
users to take place.

2 – P2P complement to a CDN

WebRTC’s capabilities as a peer-to-peer technology enable very interesting use
cases in the CDNs environment, even though they may appear to be antago-
nistic technologies. One of them is the ability to establish a serverless P2P ne-
twork that helps the dissemination of content through WebRTC data channels.
This makes each user can operate as a small CDN, sharing content that is being
downloaded with other users, without the need for any type of server in be-
tween. This generates several benefits, the first one is the ability to reduce traffic
from the CDN as an efficient cost reduction strategy.

The second, as an enabler of such high bitrates that are difficult to reach using
a CDN. Both cases have many applications but one of the most exciting is their
use in the broadcast of large live events, such as a Champions League Final,
where many people will be watching the same content simultaneously and in
proximity to each other. This type of application is perfect for regionalization,
feeding through P2P the content coming from the CDN and guaranteeing its
quality at all levels. CDNs are perfect for taking content anywhere, but they have
problems scaling very steeply in very specific areas, and that’s where WebRTC
and its P2P capabilities can ease the load on servers that are deployed around
the world and ensure content delivery anywhere. Although these types of archi-
tectures are not simple, at Epic Labs we have the knowledge to deploy them and
make WebRTC a natural ally of traditional television, OTT TVs and CDNs.

WebRTC for Live Media and Broadcast

Copyright Epic Labs 2017.November 2017

Biography

A vocation for innovation.
Jesus is Founder & Media Lead Architect of Epic Labs, a Software Innovation Center specialized in media,
video and streaming. An engineer at heart, he is an early software engineer with passion on distributed sys-
tems, video processing and encoding algorithms, media protocols and WebRTC. He currently leads the Epic
Labs Team driving the reference client implementation of DASH IF, Dash.js.

Before Epic Labs, Jesús worked at Akamai doing Media Products engineering where he received several
performance and innovation awards.

Software Architect
Backend Engineer
Data Engineer

Jesús Oliva
Founder & Media Lead Architect

About the autor

epiclabs.io

Calle Salvatierra, 4

28034 Madrid

+34 666 069 988

info@epiclabs.io

