
Swarm Feeds

Javier Peletier

CTO @ Epic Labs
@jpeletier

jm@epiclabs.io

Agenda

• About Epic Labs

• What are Swarm Feeds?

• How do Swarm Feeds work?

• How do I use Swarm Feeds?

• API introduction

• Demos

#BeEpic!

Ethergit

A Software Innovation
Center

Helping medium to large
companies innovate

Experts in Media, Video
Encoding & Machine
Learning applied to

Video

Blockchain consulting
services & training

Swarm Feeds

What are Swarm Feeds?

A microblogging platform:

•You can post updates about a certain
topic

•You can read other people's updates
about a particular topic

•You can also see older posts

What are Swarm Feeds?

A key-value store, where:

•Each user can only write to their own key
space.

•You can read yours and other users' key
space

•You can retrieve older versions of the value
for a key.

Addressing Feeds

A Feed is addressed with only two things:

• User's ethereum address

• Topic, which is a 32-byte array.

Thus, there is one feed per topic per user.

Imagine you had a Twitter account for each possible topic!

type Feed struct {

Topic Topic

User common.Address

}

Benefits & Applications

• Instantly alter content in Swarm without
on-chain transactions

• Enable DApps to persist content easily

• Quickly retrieve older versions of
content

• Enable social-type DApps

• Enable decentralized IoT

Example feeds

Topic User 0xAAAA… User 0xBBBB… User 0xCCCC…

avatar

local-weather “sunny” “cloudy”

website 0xbacde124… 0x9876533…

TODAY:

Thus, QueryFeed(0xAAAA, “avatar”) ->

QueryFeed(0xBBBB, “local-weather”) -> “cloudy”

You also have the time domain…

Topic User 0xAAAA… User 0xBBBB… User 0xCCCC…

avatar

local-weather “sunny” “rainy”

website 0x12345678… 0x9876533…

QueryFeed(0xAAAA, “avatar”) ->

QueryFeed(0xAAAA, “avatar”, YESTERDAY) ->

QueryFeed(0xBBBB, “local-weather”, YESTERDAY) -> “cloudy”

THE NEXT DAY...:

Posting to / reading a Feed

To post to a Swarm Feed, you need two things:

• A private key/address pair to sign your update

• The topic of your post

To read a Swarm Feed you need to know:

• The user's ethereum address

• The topic under which the user is posting

• (Optional) if interested in older posts, the timestamp to look up

Feed Topic

A Feed Topic is a user-defined 32-byte array

• Can be anything: a string, a hash of
something...

• Make sure users can easily derive the topic

For example, if it is known that people post
their avatar to the "avatar" topic, given
somebody's ethereum address you could
retrieve their picture by looking up that
feed.

Feed Payload

•Feed payload data is limited
to feed.MaxUpdateDataLength bytes,
or 3963 bytes.

• In general, you will want to post to the feed
the hash of the actual content, rather
than the content itself. 🚚

Feed Manifest

A Feed manifest is just a JSON that contains the bare minimum
information to look up a feed, that is, again:

• User's ethereum address

• Topic

This JSON can be then uplodaded to the regular content-addressed
Swarm and obtain a hash we can use in ENS and bzz:/ 📜

Example feed manifest:

{

"entries": [

{

"contentType": "application/bzz-feed",

"feed": {

"topic": "0x7765627369746500",

"user": "0x7a2e393025c567ec4089d34f393ae6b5c234536a"

}

}

]

}

ASCII for

"website"

📜

ENS and feed manifests

Before:
• Put in ENS hash of content manifest (output of swarm up)

• To Update: Put in ENS the hash of a new content manifest.
(requires another transaction)

mysite.eth

ENS

Content-

manifest

(JSON)

Content

mysite.eth

ENS

Content-

manifest

(JSON)

Content

New Content-

manifest

(JSON)

New

content

ENS and feed manifests

With Swarm feeds:
• Put in ENS hash of feed manifest (output of swarm feed create).

• To update: simply post to the feed the new content manifest hash

mysite.eth

ENS

Content-

manifest

(JSON)

Content

Feed

manifest

(JSON)

mysite.eth

ENS

Content-

manifest

(JSON)

Content

Feed

manifest

(JSON)

New Content-

manifest

(JSON)

New

content

HTTP API

• To read updates:
• GET /bzz-feed:/?topic=0xAAA...&user=0xBBB...

• (update, if found, will come in the response body)

• To post updates:
1. Learn feed status: GET /bzz-feed:/?topic=0xAAA...&user=0xBBB...&meta=1

2. POST /bzz-
feed:/?topic=0xAAA...&user=0xBBB...&time=15...&level=xx...&signature
=0xCCC...

• Update must be attached in the request body.

GO API

• To read updates:
• Build (or reuse) a feed.Query object, indicating user+topic

• Call client.QueryFeed() with your Query object. You will receive an io.Reader with the
raw feed data.

• To post updates:
1. Build (or reuse) a feed.Query object

2. Obtain a feed.Request object with client.GetFeedRequest()

3. Attach data with Request.SetData()

4. Sign with Request.Sign()

5. Call client.UpdateFeed() with your signed Request

Digest & Feed Signatures

Feed signature is the Ethereum
ECDSA 65-byte signature of the
digest of the feed update
structure.

Digest is the keccak256 hash of
the feed update structure

Signing code available in Go, JS
and C++ (new).

DEMO – updating a website
using Feeds

Swarm Feeds IoT demo!!

Feeds provides an excellent building block
for IoT

Demo: get a cheap ESP8266 to sign and

publish a temperature feed to Swarm!

Dashboard: https://swarm.epiclabs.io/bzz:/4dea5857577cc7c93

bd8affa04acfdf8c98295aae888118bfae092b652509f98/

Areas of improvement:

• Accelerate lookup algorithm

• Simplify signing feeds in different platforms

• Push for an official JS client

• Improve HTTP API

• User mount point in /bzz:/

Thanks! Q&A

Feeds Guide: https://swarm-guide.readthedocs.io/en/latest/usage/feed.html

Appendix: Validators in Swarm

Validator is a function that accepts or rejects a chunk

• Content-addressed validator:
• valid = key == H(value)

• Feeds validator:
• value: user, topic, epoch, payload, signature

• valid == ecrecover(H(user, topic, epoch, payload),

signature) == user && key == H(user, topic, epoch)

