Using GPUs for training machine learning applications can speed operations up to 40 times faster than using a common CPU. In this video a stable environment for using TensorFlow 1.3 with CUDA is presented and a simple script is given so we can assure we are using our GPU!

Cuda 8.0 → http://docs.nvidia.com/cuda/cuda-installation-guide-linux/#axzz4VZnqTJ2A
cuDNN 6.0 → https://developer.nvidia.com/cudnn (requires sign up)
Tensorflow 1.3 → https://www.tensorflow.org/

Pip and virtualenv:

sudo apt-get install python-pip python-dev build-essential
sudo pip install --upgrade pip
sudo pip install --upgrade virtualenv

Create virtual enviroment´s directory:

mkdir my_envs && cd my_envs

Create virtualenv:

virtualenv env

Activate virtualenv:

source env/bin/activate

Installing tensorflow-gpu:

pip install tensorflow-gpu #pip≥8.1

Running the script:

python tutorial.py

keep learning with Epic Academy